
f!) Pergamon

Inl.1. Solids Struc/ures Vol. 32, No. I L pp. 1555-1570, 1995
Copyright 1995 Elsevier Science Ltd

Printed in Great Britain. All rights reserved
0020-7683/95 $9_50 -i-- .00

0020-7683(94)00199-5

STRESS STATES AT NEIGHBORING FIBERS
INDUCED BY SINGLE-FIBER INTERPHASE DEFECTS

H. S. CHOI and J. D. ACHENBACH
Center for Quality Engineering and Failure Prevention, Northwestern University, Evanston,

IL 60208, U.S.A.

(Received 19 November 1993; in revisedform 8 August 1994)

Abstract- A reduced interphase stiffness of a single fiber (the dissimilar fiber) in a unidirectionally
reinforced composite gives rise to stress deviations in its own interphase, as well as in the interphases
of neighboring fibers, relative to the stresses in a perfect composite. For transverse loading and an
arbitrary cross-sectional distribution of the fibers, a general method is presented to calculate these
stress deviations, based on solutions by the boundary element method ofboundary integral equations
for the dissimilar fiber and neighboring fibers. In this method nearest and next-nearest fibers are
taken into account. The interphases are represented by the spring layer model. Detailed numerical
results are presented for the special case of a hexagonal array composite. Results are compared for
calculations taking into account nearest and next-nearest neighbors. Stresses at the matrix sides of
the interphases and energy densities in the interphases have been calculated for the dissimilar fiber
and for the next-nearest neighbors. These stresses have also been obtained for the case that the
dissimilar fiber has interphase flaws.

INTRODUCTION

The overall mechanical properties and the strength of fiber-reinforced composites are
significantly affected by the properties of very thin layers at the fiber-matrix interfaces, i.e.
by fiber-matrix interphases. Several authors have investigated the effects of interphase
compliance and interphase flaws on the effective elastic constants of the composite material.
In these studies interphases have generally been represented by the spring-layer model. In
this model the interphases are treated as very thin zones of unspecified thickness. The radial
and tangential tractions are continuous across the interphase, but the displacements may
be discontinuous between fiber and matrix due to the presence of the interphase. It has
generally been assumed that the tractions are proportional to the corresponding dis
placement discontinuities. The proportionality constants characterize the stiffness of the
interphase. This "spring-layer model" has been employed by many authors, e.g. Benveniste
(1985), Steif and Hoysan (1987), Hashin (1990) and Achenbach and Zhu (1989). Benveniste
(1985) calculated the effective modulus of a composite reinforced by spherical particles
which are not well bonded to the matrix. Steif and Hoysan (1987) used an energy method
for calculating the longitudinal stiffness of aligned short-fiber composites with imperfectly
bonded interfaces. Hashin (1990, 1991) used the spring interphase model in his analysis of
the thermoelastic behavior of a fiber reinforced composite as wel1 as that of a particulate
composite. He (1992) applied extremum principles of the theory of elasticity to composite
bodies to obtain simple bounds for the effective elastic properties of two-phase materials
with imperfect interfaces. Jasiuk et at. (1992) have investigated the effect of a sliding
interface on the elastic properties of composites with randomly distributed circular and
spherical rigid inclusions. Recently, Gosz et al. (1992) obtained the transverse constitutive
response of a hexagonal array composite using a combined analytical and numerical
method.

The effect of interphase flaws and radial matrix cracks on the overall mechanical
properties has been studied by Achenbach and Zhu (1989, 1990) and Achenbach and Choi
(1991). These investigations have been carried out for periodic arrays of the fibers, such as
rectangular and hexagonal arrays, and it has been assumed that interface flaws and matrix
cracks have the same periodic distribution as the fibers. By virtue of these geometrical
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simplifications it was possible to consider a basic cell for detailed calculations of the fields
of stress and deformation.

In this paper the more general case is considered of a single fiber which has either a
smaller interphase stiffness, or whose interphase contains a defect. All the other fibers have
the same interphase properties. The stress deviations in the interphases generated by the
presence of the dissimilar fiber are calculated and relevant stresses and deformation energy
densities in the interphases of the composite with the dissimilar fiber are compared with the
corresponding quantities in the perfect composite. This work generalizes an earlier study
by Zhu and Achenbach (1991). The approach used in this paper is applicable for linearly
elastic behavior of the fibers and the matrix.

FORMULAnON

Figure 1 shows a cross-sectional view of a unidirectionally reinforced fiber-composite
in which all fibers are of the same radius a and have the same interphase properties, except
one: the dissimilar fiber. This fiber has different interphase stiffness properties including
the possibility that all or part of the interphase may have zero stiffness, i.e. the fiber may
be completely or partially debonded. It is assumed that at a remote location the composite
is subjected to uniform normal stresses P(Jo and Q(Jo in the x and y directions, respectively.
The fibers are labelled by the index "q", where the index "0" is used to identify the dissimilar
fiber, and where roughly speaking the larger the value of q, the larger the distance from the
dissimilar fiber. The circumference of fiber q is denoted by rq • A large contour roo is the
boundary of an area of interest of the cross section shown in Fig. 1. Inside r 00 there are
N+ I fibers. Thus q = 0,1,2, ... , N.

Following earlier papers by Achenbach and Zhu (1989, 1990), a very thin compliant
interphase between fibers and matrix is modeled by a distribution of mechanical springs
across a representative interface. This model implies that the tractions are continuous, but
the displacements may be discontinuous across this interface. For linear behavior in the
interphase, the relations between the relevant traction and displacement components may
then be written as (at r = a)

- t':' = t~ = kr(u':' - u~) if - t':' = t~ > 0

- t';' = t~ and u';' = u~ if - t';' = t~ :s; 0

(1 a)

(1 b)

(1 c)

(a) (b)

Fig. 1. (a) Cross-sectional view of the composite with a fiber with dissimilar interphase stiffness,
(b) configuration of a fiber.
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where tr and to are the interface tractions in the radial and circumferential directions,
respectively. Here and in the sequel, quantities with upper index "m" and "f" are defined
in the matrix and the fiber regions, respectively. The addition ofeqn (I b) assures that the
model will not allow a physically unrealistic radial overlap of the matrix and fiber materials
across the interface. The constants k r and ke are proportionality constants which define the
mechanical properties of the interphase.

The conditions (1) include the case ofperfect bonding (kr = ko = 00) when the tractions
and displacements are continuous and the case of total debonding (kr = ko = 0) when the
tractions vanish. In the latter case, it should be noted that the pure sliding condition
(kr = 00, ke = 0) is assumed to exist on the interface when the radial stresses are compressive.
If there exist interphase defects like open cracks, say over a region - 8.. < 8 < 8.. < n/2 and
- 8c +n < 8 < 8c +n, then in the domain 0 ~ 8 ~ n/2 the conditions (1) are valid for r = a,
8c < 8 ~ n/2, while for r = a and 0 ~ 8 ~ 80 we should have interphase crack conditions
defined by

t:" = t~ = t;f = t~ = O. (2)

It is also noted that for an interphase crack the ligament at the tip of the disbond
undergoes a finite stretch when in tension, and consequently the tractions remain bounded.
Hence the usual problems of violently oscillating singularities (see Williams, 1959) that are
associated with crack-tip fields for a crack in a perfectly bonded interface, do not occur
for the spring-layer model. This conclusion follows immediately from eqn (I) and the
boundedness of the displacements.

For the generation of interphase cracks, as well as their propagation and arrest, it is
feasible to use a critical stress, critical strain, or critical strain energy density criterion,
because in the spring-layer model these quantities are well defined near the tip of an
interphase crack. In this paper we will employ an energy density criterion, since it combines
information on the tensile and shear stresses in the interphase. For the interphase model
defined by eqns (I), the strain energy per unit interphase area is easy to calculate. We have

(3)

It should be noted here that t~ is included in V only when t~ is positive (tension). It is
assumed that compressive values of t~ do not affect the integrity of the interphase.

By substituting k into eqn (3) the normalized form of V, a= V Jim /(a;a), becomes

(4)

where Jim is the shear modulus of the matrix material, and aa is the applied stress. It is
reasonable to assume that the interphase will break and form an interphase crack in a
region of positive radial stress when

V?: vcr. (5)

When V = vcr, the applied stress aa reaches a critical value agr which can be related to Dcr
byeqn (4) as

[
Jim vcrJ~

acr 2
a - -

a V
(6)

An analysis of the initiation and propagation of matrix cracks must also be based on
an appropriate criterion. For a perfect composite subjected to tensile stresses, numerical
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results show, in agreement with physical intuition, see e.g. Achenbach and Zhu (1989,
1990), that the circumferential tensile stress at the fiber-matrix interphase is the largest
tensile stress component in the matrix material. As a crack initiation criterion we choose

(7)

where (fer is a critical stress of the matrix material for matrix crack initiation.
The displacement and traction components for the case that no dissimilar fiber is

present (perfect composite) are denoted by u[P(x) and tfp(x) for the fibers, and U;ffiP(X) and
t:"P(x) for the matrix material. The deviations of these quantities due to the presence of a
dissimilar fiber are denoted by af(x), l;(x), a:"(x) and l:"(x). The total displacement and
traction fields in the presence of a dissimilar fiber may then be written as

u:"(x) = u:"P(x) +a:"(x)

tf(x) = tfP(x) + 1;(x)

t:"(x) = t!"P(x) + l:"(x).

(8a)

(8b)

(8c)

(8d)

The interface conditions corresponding to the case of a different interface constant are
obtained by replacing in eqns (la), (lb) and (lc) the total tractions t';', to', t~, and t~ by the
superpositions (8c) and (8d). On the interphase 1 q ( =1= 10) we then have:

(9a)

(9b)

where (r, e) is a local polar coordinate located at the center of each fiber and 1 q represents
the interfacial boundary of the fiber q. On the interphase 10 we have:

(9c)

(9d)

In eqns (9c) and (9d), kr and ke are the interphase constants for the dissimilar fiber.
If the interphase 10 contains an interphase crack in the range of -ee < e < ee < nl2

and n-ec < e < n+eethen eqns (9c and 9d) become

(ge)

(9f)

For all interphases 1 q induding 10, the continuity of the tractions across the interphase 1 q

are satisfied by

-1';' = 1~

_1~' = 1~.

(lOa)

(lOb)

By appropriate coordinate transformations the interphase conditions (la), (Ib) and
(lc) can be expressed in terms of Cartesian components of tractions and displacements
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which will be used in the actual computations. The interphase conditions on the interphase
r q (#- r o) given by eqns (9a, 9b) may be rewritten as

l~ . 1'; .
aC l cos8-+aC] S1ll8~ +cos8(a~-a~)+s1ll8(a;-a~)=0 (lIa)

flm flm

-aC2 cos 8 l~ +aC2 sin 8 1'; sin 8(a;' -aD +cos 8(a;-aD = 0 (lIb)
flm flm

where l;y/ flm has been introduced to enhance the accuracy of the solutions of the simul
taneous equations in the numerical calculations using the HEM. The dimensionless com
pliant constants are defined as

(l2a,b)

Similarly the interphase conditions (9c, 9d) on the boundary of the dissimilar fiber,
r 0, can be expressed as

(l3a)

(13b)

where

(l4a,b)

If the interphase of r 0 contains an interphase crack in the range of - 8e < e< ee < n/2
and n-ee < e< n+ee then eqns (l3a, l3b) become

t~P = - l~ and t';P = - 1;. (l5a,b)

If the dissimilar interphase r o has compressive radial tractions over one or more
elements on r o then to prevent the interphase from overlapping, the eqns (l3a, 13b) become

a~ = a~ and a; = a~, on r o ift~ < O.

Continuity of tractions across the interphase r q including r o is satisfied as

1'; = - l~ and 1; = - l~

(l6a,b)

(l7a,b)
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BIEs for unidirectional composite with one dissimilar fiber
In earlier papers, see e.g. Achenbach and Zhu (1989, 1990), a boundary integral

equation has been derived for the displacements and tractions on the circumference of a
fiber inside a basic cell of the composite. Here we write the analogous boundary integral
equation for fiber q.

where

(18b)

and

(19a)

A similar BIE for the solution u)"P(~) in the matrix of the perfect composite can be written
as

~u)"P(~) = r Uij(x,~)tjP(x)dr(x)- r Tij(x,~)ujP(x)dr(x), XEr, ~Erq. (20)
Jr+rx Jr+rco

Subtracting eqn (20) from eqn (18) gives a BIE for a)"CO as

~a)"(~) = t Uij(x, ~)lj(x)dr(x) - t Tij(x, ~)aj(x)dr(x)

+L, U~j(x,~)lj(x)dr(x)- tx Tij(x,~)aj(x)dr(x), XEr, ~Erq' (21)

Since the tractions 1j(x) corresponding to a)"(x) are self-equilibrating with respect to
the center of fiber zero, it follows from Saint-Venant's principle that af(x), a)"(x), 1f(x) and
1)" (x) decrease as the field point x moves away from the center of the dissimilar fiber.
Hence, the contour can be appropriately chosen so far from the origin that the integrals
over the contour eX! in eqn (21) come to vanish. As an additional approximation it may be
assumed that only a small number of neighboring fibers need be included in r.

The corresponding BIE for the fiber q may be written as

~ufm = r U;Jx, ~)t5(x) dr(x) - r T~(x, ~)u5(x) dr(x), x, ~ E r q . (22)
Jrq Jrq

Similarly, substituting eqn (8a) into eqn (22) yields
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~a~(~) = r U~;(x, ~)t5(x) dr(x) - r T;;(x, ~)ii)(X) dr(x)Jrq Jrq

-~u~P(~)+ r U;;(x,~)t;P(x)dr(x)- r T;Jx,~)u?(x)dr(x), X,~Erq. (23)
Jrq Jrq

But we know that the terms in the second line of eqn (23) vanish for all fibers in the
composite without a dissimilar fiber, so we have

~a~m = r U~(x, ~)l;(x) dr(x) - r T~(x, ~)a5(x) dr(x), x, ~ E rq • (24)
Jrq Jrq

For plane strain the circumferential stress (T~ along the matrix side of the interphase
may be calculated by

m v
m m 2J1m (m au~)

(T = ---t +~--~- u +-
a ] _ vm r a (1- vm) r aB

where au~laB will be obtained by a numerical differentiation method.

(25)

Example: hexagonal-array composite
Equations (1)-(25) are valid for any distribution of the fibers over the cross section.

We will now, however, consider the special case of a hexagonal-array composite as shown
in Fig. 2. For the case without a dissimilar fiber the interphase fields have been analysed by
Achenbach and Zhu (1989,1990).

(b)
(c)

Fig. 2. Configuration for the hexagonal array: (a) the dissimilar fiber 0 has lower interphase stiffness.
All other fibers have the same interphase stiffnesses, (b) shows the domain for numerical calculations,

and (c) the dissimilar fiber 0 has interphase debonding.
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The centers of the regular fibers are located at the following points

(
/3 I )

(x,y) = Y2 bi, 2. bj lil,IJI=O,I,2,3, ... and i+J=eveninteger (26)

where b is the distance between the centers of two adjacent fibers, and Iii + lil =I- O. A
Cartesian coordinate system (x, y) has its origin at the center of the dissimilar fiber.

Because of symmetry with respect to the x- and y-axes we only need to consider the
fibers in the first quadrant, as shown in Fig. 2. The nearest neighbors to the dissimilar fiber
are denoted fibers I and 2, and the next nearest fibers are 3, 4, 5 and 6.

The symmetry conditions on the sides of the first quadrant make it possible to limit
the boundary element calculations to that quadrant only. The fundamental solutions which
satisfy the symmetry conditions Ux = tv = 0 at x = 0 and uy = t~ = 0 at y = 0 can be
constructed from the full-space fundamental solutions given by eqns (19a)-(19b). For a
load applied at (x, y) the construction is easily achieved by placing corresponding loads at
the image points of (x, y) in the other three quadrants, as shown in Fig. 3. In terms of
Uij(x, ~) and Tj/x,~) given by eqns (19a)-(19b) (superscript "m" can be disregarded), the
first quadrant fundamental solutions U~(x,~) and T~(x,~) may be written as

where the coefficients Ct., fJ and y take values, Ct. = f3 = - y = - I for i = 1 and
-Ct. = f3 = I = -] for i = 2 and ~ denotes the conjugate point of~.

More detailed expressions for U9(x,~) and T~(x,~) are given in the Appendix.

Boundary element method
Equations (18)-(24) have been solved numerically by an application of the boundary

element method. The equations have been solved in the first quadrant shown in Figure 2(b)
by using the fundamental solutions given by eqns (27a) and (27b). It has been assumed
that the deviations in the fields of stress and deformation generated by the interphase
properties of the dissimilar fiber 0 extend to the next nearest two fiber-layers only, i.e. to
the fibers I and 2 in the first fiber-layer and to the fibers 3-6 in the second fiber-layer.

y

Fig. 3. Geometrical construction of the first quadrant fundamental solutions; ~ = (~" ~2) and
~ = (~" -~J.
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The contours, r(), r l , r 1 , r" r 4 , r s and r,,, contain unknown deviations of the tractions
and displacements. Along these contours, the integration is performed clockwise for the
matrix side integration and counterclockwise for the fiber side. Suppose that the contours
r o, r], r b r 3, r 4 , r s and r 6 are divided into Nih N I , N 2 , N" N 4, N s and N 6 elements,
respectively, where the fields are taken as constants over each clement. We then have 8No,
8N" 8Nb 8N3, 8N4 , 8Ns and 8N6 unknowns for the integrations over the contours ro, r b

r 2 , r 3 , r 4 , r s and r 6, respectively (two traction and two displacement components on each
side of a contour). Consequently we have a total of 8(No+N I +N2+N3+N4+Ns+N6)
unknowns. The same number of equations is needed. Equations (21) and (24) give
4(No+ N I + N 2+ N 3+ N 4 + N s+ N 6) equations and the continuity of tractions, eqn (9), tog
ether with eqn (13) on the interface yields 4(No+N,+N2 +N,+N4 +Ns+N(,) equations.
Hence the total number of equations is the same as the total number of unknowns. Thus
the discretized system of eqns (21) and (24) can be solved numerically. When there are no
interphase flaws, all interphases are equally divided, specifically in 120 or 60 elements, such
that 4No = N I = 2N2 = 120 and 2N, = N 4 = N, = 2N(, = 60. When r o contains a crack,
the crack tip element and the element ahead of the crack tip element are further divided
into smaller elements to give more accurate results. The number of elements near the crack
tip is increased until a further increase does not change the numerical results. Numerical
calculations have been carried out for FP/AI composites (see Takahashi and Chou, 1988)
with the following properties:

Aluminum matrix: p111 = 25.61 GPa, 1'111 = 0.345

FP(AI 2 0,) fibers: pi = 157.9GPa, l = 0.2.

The perfect and the dissimilar interphase constants (k" ko) and (k" ko) were rendered
dimensionless by division by j1lTI/a, where a is the radius of the fibers. In the computations,
the two interphase constants were taken equal in magnitude, and thus k,/(j1lTI/a) = kef
(j1lTI/a) = k. Similarly in the dissimilar interphase k,/C/1111/a ) = r'o/(p111/ a) = k.

In the initial state of the calculation the radial interface stress v:" (= v; = t; = -t~)

is computed under the assumption that eqn (I a) applies along the interface of the dissimilar
fiber. If a negative radial stress value is obtained over one or more elements and the
displacements display an overlap, eqn (la) is replaced by eqn (lb) and the calculation is
redone until the overlap disappears and all boundary conditions are satisfied. Values of
k = 0.001,0.1, 1, 10, 100 and Cf) were considered forthe interphase stiffness of the dissimilar
fiber and k = Cf) for the neighboring fibers. The fiber volume ratio VI was chosen as 0.2,
0.4, 0.6 or 0.8.

RESULTS

The approximation of including only the nearest and next-nearest neighbors in the
BEM calculations would seem to be a reasonable one. The question does, however, arise
whether sufficiently accurate results can be obtained by including only the nearest neighbors,
i.e. fibers 1 and 2 in Fig. 2. Intuitively it is expected that this simpler approximation will be
valid for smaller volume densities, VI, of the fibers. Test calculations have been carried out
for the case of uniaxial tension, for Vr = 0.2 and VI = 0.8. and k = 10 and k = 1. The
results are shown in Fig. 4. It is noted that the inclusion of the next-nearest neighboring
fibers (solid lines) makes a small difference which becomes somewhat more pronounced for
smaller values of k and larger values of VI' The numerical results presented in the sequel
have been carried out taking into account only the next nearest neighbors.

Figure 5 shows the stress fields v,/(Ju, (JrO/VI)' vo!(Jo at the matrix side of the interphase
and the normalized strain energy density 0 in the interphase of the dissimilar fiber for the
case of tension in the x direction. The radial stress in the region of tensile stresses decreases
as the interphase stiffness, k, of the dissimilar fiber decreases. The maximum value of the
hoop stress, near e= 75°, does, however, increase as k decreases. Other calculations not
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e
Fig. 4. Comparison of stress fields in the interphase of the dissimilar fiber obtained by considering
only the first fiber layer (dashed lines) and considering both the first and second fiber layers (solid

lines) for the selected values of Vr and k.
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Fig. 5. (['/([0' (['0/([0' ([0/([0 at the matrix side of the interphase and ain the interphase of the dissimilar

fiber 0, for various k with k = 00 and Vr = 0.4, and for uniaxial tension in the x direction.
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Fig. 6. ae/ao at the matrix side of the interphases of the dissimilar fiber 0 and the neighboring fibers

I and 2, for various k with k = cy) and V, = 0.6, and for uniaxial tension in the x direction.

reported here show that the magnitudes of (Jr/(JO' (Jre/(Jo, (Je/(Jo and a at the dissimilar
interphase are slightly less than those of (Jr/(JO' (Jre/(Jo, ae/(Jo and aat the interphases of the
perfect composite with the same interphase stiffness (k = k) in all interphases. That differ
ence becomes larger for lower interphase stiffness k.

Figure 6 shows the hoop stresses along the matrix-side of the interphases of the three
fibers 0, I and 2 with Vf = 0.6 for various k: k = 00, 10, 1,0.1,0.001. Comparison with the
results of Fig. 5 shows that the hoop stress (Je/ao of the dissimilar fiber for Vf = 0.6 is slightly
smaller than that for Vf = 0.4. The hoop stresses of the neighboring fibers I and 2 slightly
increase as k decreases. The result shows that for low k the positive maximum hoop stress
«(Je)max occurs near e= 70° for the dissimilar fiber, near e= -208° for the neighboring
fiber 1 and near e= - 30° for fiber 2.

Figure 7 shows the hoop stresses along the matrix side of the interphase of the dissimilar
fiber and the strain energy in the interphase for the case of uniaxial compression in the x
direction. When the composite is compressed in the x direction the maximum tensile hoop
stress occurs at e= 0° for low k and at e= 90° for high k (above 10). For the dissimilar



Fig. 7. aD/aD at the matrix side of the interphase and a in the interphase of the dissimilar fiber 0, for
various k with k = OCJ and V, = 0.4, for uniaxial compression in the x direction.

fiber the maximum strain energy Umax occurs near 8 = 55° for k = 1. The hoop stresses of
the neighboring fibers 1 and 2 are compressive for any k.

When the interphase of the dissimilar fiber contains interphase cracks as shown in Fig.
2(c), the behavior of IIrllIo, IIrellIo, lIellIo and 0 depends greatly upon the interphase stiffness
k. Figure 8 shows lIellIo and 0 for various k along the matrix side of the interphase of the
dissimilar fiber for an interphase crack of length c = c10.05236a = 9, for the case of an
uniaxial tensile stress lIo in the x direction. The maximum hoop stress and energy density
are obtained at the crack tip. The magnitude of the hoop stress increases with increasing
values of k. The results for lIellIo at the neighboring fibers I and 2 are also shown in Fig. 8.
The overall behavior for the neighboring fibers is very similar to that displayed in Fig. 6.

Figure 9 shows lIellIo along the matrix side of the interphase of the dissimilar fiber and
oin the interphase for k = 10 and k = I, for various interphase crack lengths c. The results
show that for k = 10 the positive maximum hoop stress occurs at the crack tip and increases
as c increases. On the other hand for k = 1 the positive maximum hoop stress occurs near
8 = 75° for c < 18. Results not displayed here show that for both k = 1 and k = 10 the
stresses lIe along the interphases of the neighboring fibers 1 and 2 increase locally as c
increases, but there is little difference between k = 1 and k = 10.

A stability condition is needed when interphase cracks are present. The strain energy
criterion was introduced in the papers by Achenbach and Zhu (1989, 1990) to investigate
the proclivity of an interphase crack to propagate. Figure 9 shows that 0 plotted versus 8
shows maximums at the tips of the interphase cracks of the dissimilar fiber. For k = 1, the
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maximum values first increase and then decrease as cincreases. They become in fact smaller
than for c = 0, and hence the interface flaw will be arrested for that case.

CONCLUDING COMMENTS

A fiber whose interphase has a lower stiffness than the surrounding fibers, or whose
interphase contains cracks, gives rise to higher fields of stress and deformation in its
immediate vicinity. For the case of transverse loading, a numerical method based on the
solution of boundary integral equations by the boundary element method has been
developed to obtain the stresses at the matrix side of the interphases and the deformation
energy density in the interphases, for the dissimilar fiber and its nearest neighbors. The
example of a hexagonal array fiber composite has been discussed in some detail, and
particular attention has been devoted to the hoop stresses and the deformation energy
densities since critical values of these quantities may be associated with radial matrix
cracking and interphase cracking, respectively.
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APPENDIX: FIRST QUADRANT FUNDAMENTAL SOLUTIONS

The components of the two-dimensional first quadrant fundamental displacement solutions may be written
as

[ R,RJ (OR) (OR,), (OR 3 )' (EJR4)']=K(3-4v)ln-~+- -- -- +-RR4 OX, 2 ax, ox, ax,

(AI)



where K = 1j[8n,u(l-v)]. Also
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(A2)

(A3)

and

[ R]R, (OR)' (OR,), (OR,)2 (OR,),]=K (3-4v)ln--+ - + - - -" - - .RR, ox, ox, ox, ox, (A4)

Here, as shown in Fig. 2, R" R] and R, are the distances between the load point in the first quadrant and the
image points in the second, third and fourth quadrants, respectively. Also, R is the distance between load point,
~, and the field point, x. Thus,

The first quadrant traction solutions may be expressed as

CoR [ (OR)'] CoR, [ (OR')']=--:;- (l-2v)+2 - --- (1-2v)+2 -Ron Ox, R, an ox,

CoR, [ (aR])'] C (JR, [ (OR4)']--- (1-2v)+2 - +-- (l-2v)+2 -R3 an ox, R4on ox,

where C = - 2,uK. Also

C [ oR, oR, aR, (OR, aR,)]+-R 2-
0

-,--,--(1-2v) n,-o -n,,,-
2 n ox] OX2 Xl uX,

(AS)

(A6)

(A7)

(A8)
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and
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C,'R l' ("R)'J CDR, [ (DR')'J=-- (1-2\)-12.-=-:" + ---;;--" (1-2\')+2 ~,~
R t.\. R, ,n "X, (A9)

(CR"'J CoR. [ ('R )'J2\')+2 .'~~) --~ (I-2v)+2 ~~ _.
. '.\, R4 Ul "X,

It can be verified thett the first quadrant fundamental solutions satisfy the following boundary conditions on
axes of symmetry:

(/,(X.~) = TiI(X,~) = n. XE(X ~ O,y = 0).

(AIO)

(All)

Here the subscript i denotes the load direction and takes a value of I or 2, while the second subscript indicates the
displacement or traction direction.


